Frequencies and Distribution of *Wakaranai*, an Expression of Nonunderstanding, in L2 Learning Tasks

YOKO SEKIGAWA

Key Words
sequential functions, nonunderstanding, frequency, pair work, collaborative problem-solving tasks

Abstract

In this paper I present the frequencies and distribution of sequential functions of *wakaranai*, an expression of nonunderstanding or lack of knowledge, in grammar, reading, and video story tasks. The study is based on analyses of the audio-recorded data of conversations between 49 Japanese EFL learners engaging in collaborative problem-solving activities. The results indicated that the learners used *wakaranai* particularly frequently in lieu of proposing candidate solutions and in response to proposed candidate solutions and that the use of *wakaranai* to perform particular sequential functions varied with the task.

この論文は、文法・読解・ビデオ教材を使用した英語学習において、第二言語学習者が発する知識や理解の不足を表す発話（「分からない」）の頻度と分布について考察したものである。データは共同問題解決学習に取り組む49名の日本の英語学習者から録音採取した。分析の結果、学習者の発する「分からない」という発話は、問題解決方法を相手に提案する時に相手が提案した解決方法に答える時に、特に頻繁に出現することが分かった。また、「分からない」が会話連鎖の中で果たす種々の機能は、学習課題によって出現頻度が異なることも明らかになった。

Introduction

The communicative language teaching approach has placed an emphasis on interaction through pair work and group work because interaction is thought to increase comprehensible L2 input through the negotiation of meaning (Long, 1983) and promote output (Swain, 1985, 1995), both of which are believed to result in greater L2 acquisition. Peer learning has also sociocultural significance (e.g., Donato, 1994; Ohta, 2000, 2001; Storch 2002); however, long history of teacher-fronted, teacher-centered classroom practice in Japan seems to have led to skepticism about the efficacy of peer learning.
Many teachers and learners believe that learners do not learn as much from their peers as they do from the teacher and that less proficient learners may benefit from interacting with more proficient learners. However, they also believe that more proficient learners are not likely to benefit from pair or group work and that learners tend to rely on their L1 when they have difficulties in comprehension and production. Given these beliefs, it seems reasonable that many teachers are uncertain about the benefits of pair or group work and thus unable to make pedagogical decisions with confidence regarding the use of pair or group work in the classroom.

In fact, one type of utterance that Japanese learners of English in peer learning often produce when they encounter a problem is *wakaranai*, roughly meaning “I don’t understand” or “I don’t know” in English. The learners’ use of this expression does not necessarily derive from their level of L2 proficiency. The learners in the present study, for instance, are intermediate-level learners and could express nonunderstanding (NU) or lack of knowledge (LK) with “I don’t understand” and “I don’t know.” Yet, they often code-switched from their L2 to L1 and expressed NU or LK when they encountered L2 learning problems.

This mundane expression of insufficient knowledge has a socioculturally important aspect. Learners seem to be aware of contextualization cues (Gumperz, 1982) signaled in the expression of NU or LK and use it for particular communicative purposes in peer learning.

When we consider that language learning occurs in a social context through interactions with parents, teachers, peers, and others (e.g., Lantolf, 2000; Lantolf & Appel, 1994; Lantolf & Pavlenko, 1995), and that the classroom is an essential place for L2 learners to learn the target language (e.g., Bailey & Nunan, 1996; Hall & Verplaatse, 2000), empirical analyses of discursive interactions in EFL classrooms are theoretically and pedagogically significant for their potential to clarify linguistic and social processes of situated L2 learning. The examination of L2 learners’ language such as the expressions of NU or LK is one way to study how learners construct conversational sequences in L2 learning, and how they perform communicative actions in problem-solving activities. In this paper, I examine sequential functions of *wakaranai* with a particular focus on its frequencies and distribution among the various sequential environments and tasks.

Method

Participants

Forty-nine Japanese university students between the ages of 18 and 22 participated in this study. Of these, 23 were from the TOEFL Preparation Courses at University A, and the remaining 26 were from the Video Story Course at University B. All the students consented to participate in the study before the data collection started and are referred to as pseudonyms in this paper.

Twenty-three learners (5 males and 18 females; 14 first-year, 7 second-year, and 2 third-year university students) in the TOEFL Preparation Courses accounted for 52.3% of the 44 learners (8 males and 36 females; 26 first-year, 16 second-year, and 4 third-year university students) registered for these courses. The English proficiency of the 44 registered students was 380-450 on the ITP TOEFL. They were majoring in business administration, economics, education, engineering, law, or literature.

Twenty-six learners (5 males and 21 females; all first-year students) in the Video Story Course
accounted for 89.7% of the 29 learners (7 males and 22 females, all first-year students) registered for
the course. Their English proficiency was not measured with the TOEFL but was assumed to be slightly
higher than the average English proficiency of the learners in the TOEFL Preparation Courses. They
were majoring in tourism.

Both the TOEFL Preparation Courses and the Video Story Course were taught by the teacher/researcher. The classes met once a week for 15 sessions at University A and 12 sessions at University B
when the data were collected.

Data Collection

The data were collected by audio recording eight times at University A from October through
December, 2002, and six times at University B from April through June, 2003. Four MD recorders
with mini microphones were used for audio recording. On each recording occasion, clip-on mini
microphones connected to MD recorders were worn by one or two pairs of learners. The instruction
by the teacher was given in English. The learners were instructed to use English as much as they could
and were allowed to use a dictionary if necessary. They were told not to worry about their performance
when they were recorded because it was not a test. The teacher walked around the learners and
monitored their pair-work activities, and found that there was not much difference in performance
between the recorded and not recorded learners. The interactions were not videotaped because many
learners dislike being videotaped during lessons and videotaping two or more pairs simultaneously is
technically difficult without research assistants in regular classroom settings.

In total, data from 33 dyads were collected, of which 30 dyads were successfully recorded. The
unsuccessful recordings were due to operating the MD recorder improperly, the inappropriate
positioning of the microphone, or disturbing noises, such as repeated coughing and sniffing. Three
unsuccessfully recorded dyads were eliminated from the analysis.

Procedures

The tasks in which the learners were engaged in the present study were collaborative problem-solving
tasks (see Ellis, 2003) that require intellectual activity as in puzzles or logic problems and two-way
interaction with a convergent goal with a closed expected outcome (Pica, Kanagy, & Falodun, 1993).

In the TOEFL Courses the learners solved structure and reading comprehension tasks. First,
instruction on the target grammatical structures was given by the teacher. Second, the learners worked
on the exercises individually. Third, the learners paired up and worked together on the exercises
that they had completed individually. The learners were paired up from one end of a U-shaped
seating arrangement to the other end. They tended to sit next to someone who was familiar to them;
evertheless, they were not necessarily paired with the same partners because of the seating positions.
Fourth, the class went over the exercises with the teacher. The same procedure was repeated in the
following sessions.

The Video Story Course was a content-based course that focused on various contemporary issues with
the aim of improving the learners’ communicative language skills and raising their awareness of social
issues. The learners were instructed to find a partner in order to work together throughout the semester.
Most of the learners paired up with someone who was sitting next to them, and a few learners who
could not find a partner were helped by the teacher to make pairs. The learners first watched a three-minute video three times and took notes. Second, they worked with their partners to orally reconstruct the story based on their two sets of notes. Third, they watched the video two more times, filled in the missing pieces, and retold the video story in pairs for the second time. Fourth, the paired learners wrote the story together. Their written work was collected at the end of the lesson. The same lesson procedure was repeated throughout the oral and written reconstruction stages.

Data Analysis

Recently, increasing attention has been given to conversation analysis (CA) (e.g., Sacks, Schegloff, & Jefferson, 1974; Schegloff, Jefferson, & Sacks, 1977) and CA-applied research on talk in educational institutions (Ellis & Barkhuizen, 2005; Markee, 2000; Schegloff, Koshik, Jacoby, & Olsher, 2002; Seedhouse, 2004). In analyzing the data, the author followed the procedure that is generally taken in CA-applied L2 learning studies (e.g., Have, 1999; Hosoda, 2002; Hutchby & Wooffitt, 1998). The author first transcribed 30 sets of recorded data, identified the phenomenon of interest, the expression of NU or LK, and scrutinized how the utterance is linked to the prior utterance, what action(s) the utterance accomplishes, and how the utterance is linked to the subsequent interaction.

In order to check the accuracy of transcription, another transcriber (a Japanese researcher in Applied Linguistics) and the author shared 10% of the transcribed data (i.e., 3 sets of data arbitrarily selected from the 30 sets) and found no disagreements about the transcription that could affect the analysis of the focused phenomenon.

Next, the author coded all instances of *wakaranai* found in the transcribed data into categories for its sequential functions and positions. In order to check the accuracy of coding, the author set up the following procedure:

1. Code all instances of the focused phenomenon into categories.
2. Define the categories in terms of the sequential functions and positions of the phenomenon.
3. Share the definitions of the categories and test-code 10% of the instances with another coder.
4. Have the other coder code the rest of the instances individually.
5. Enter the results of the coding into the computer and calculate the intercoder agreement coefficient using SPSS.

Following the above procedure, the author coded a total of 146 instances of *wakaranai* into five categories and defined each category. The other coder (another Japanese researcher in Applied Linguistics) coded 15 instances of *wakaranai* (approximately 10% of the 146 instances) in the transcribed data with the author. When necessary, the author provided the other coder with brief background information about the tasks and contexts in which the participants were involved. Then, the other coder coded the rest of the instances (131 instances) by herself. Some uncertain cases after cross-coding were scrutinized by checking the recorded data. Eventually, the author and the other coder agreed on the coding of 139 instances, which accounted for 95.2% of the 146 instances. The kappa statistic K was employed to ascertain that the proportion of intercoder agreement was not due to chance factors. The result indicated a high agreement between the coders ($K = .93$), which was statistically significant ($z = .03, p < .01$).
The Classification of *Wakaranai*

One hundred forty-six instances of *wakaranai* were classified into five categories by examining the data with a particular focus on the functions and positions of *wakaranai* in the sequential context as follows (see Sekigawa, 2006 for more detailed descriptions):

An expression of NU or LK in lieu of a proposal of a candidate solution (i.e., an initiating position)

The speaker in a collaborative problem-solving task may express NU about a spoken or written text, or LK about spelling, lexis, or morphosyntax with *wakaranai* in lieu of a proposal of a candidate solution (Olsher, 2005) to a given problem. The speaker may (a) express global NU or LK (see Fragment 1, indicated by →), in which the speaker’s problem is unclear or unknown to the recipient, or (b) express local NU or LK (see Fragment 2), in which the speaker clearly marks a problem point. Such expressions of NU or LK can be simple informing or function as an indirect appeal for assistance to the other.

Fragment 1 [Eri-Mayu: V2-1]

1→ Mayu *tango shika wakan nakatta.*
 word only understand Neg.Pst
 ‘I didn’t understand except I picked up some words.’

2 Eri *=watashi mo tango shika (.)
 I either word only

3 *kikitor e nakatta.
 listen.and.comprehend Pot Neg.Pst
 ‘I didn’t understand except some words, either.’

Fragment 2 [Aki-Mei: V4-3]

1 Mei *Wendy lives (.) hu:h
 Wendy lives hu:h

2→ Vancouver *no superu ga wakan nai.
 Vancouver LK spelling SP know Neg
 ‘Wendy lives, hu:h I don’t know how to spell Vancouver.’

3 Aki *katakana de yoku nai?
 katakana PT okay Tag
 ‘It’s okay [to write it] in Katakana, right?’
A claim of NU or LK to a request for information in a second position

The recipient may claim NU or LK with wakaranai in response to the speaker’s request for information about spelling, the use of grammar, and the content of the video story in a second position (see Fragments 3 & 4).

Fragment 3 [Risa-Mina: V5-8]

1 Risa nee nee nee Vancouver no superu tte wakaru?=
 hey hey hey Vancouver LK spelling Top know
 ‘Hey, do you know how to spell Vancouver?’

2→ Mina wakan nai.
 know Neg
 ‘I don’t know.’

Fragment 4 [Aki-Mei: V4-1]

1 Mei Clara ga katta no?
 Clara SP bought Q
 ‘Did Clara buy it?’

2→ Aki Clara ga katta? wakan nai.
 Clara SP bought know Neg
 ‘Did Clara buy it? I don’t know.’

A coinciding expression of NU or LK to an expression of NU or LK in a second position

When the speaker expresses NU or LK, the recipient may produce a coinciding expression of NU or LK in a second position. The recipient may express his or her NU or LK by partially or entirely repeating the prior speaker’s utterance (see Fragment 5), or employing watashi mo (me neither) as in watashi mo wakaranai (I don’t understand/know either) or the particle ne as in wakaranai ne (see Fragment 6).

Ne, the Japanese sentence-final particle, indicates the speaker’s request for confirmation or agreement from the recipient about some shared knowledge, and acts like an English tag question such as “is/isn’t it?” and “do/don’t you?” (Makino & Tsutsui, 1986; Morita, 1989). Ne is also used when a person assumes that he or she shares the same information or judgment and wishes to create an affiliative relationship with the other (Cook, 1992; Maynard, 1997). Accordingly, when the recipient expresses NU or LK with ne or watashi mo in response to the speaker’s NU or LK, it in effect displays the recipient’s agreement with and sharing of the view or stance of the speaker.

Fragment 5 [Teru-Koji: V1-2]

1 Teru superu ga wakara na:i.
 spelling SP know Neg
 ‘I don’t know the spelling.’
2→ Koji superu wakara nai.
 spelling know Neg
 ‘I don’t know the spelling.’

Fragment 6 [Risa-Mina: V5-4]
1 Mina bubble no fukin ga nanka wakan nai.
 bubble LK part SP like understand Neg
 ‘I don’t understand the part of bubbles.’

2→ Risa wakan nai ne.
 understand Neg FP
 ‘I don’t understand.’

A delay to a proposed candidate solution in a second position

When the speaker proposes a candidate solution, the recipient may not perform immediate agreement or disagreement but may delay expressing his or her stance with wakaranai. When wakaranai is employed as a delay, it may occur (a) in the next turn to the speaker’s candidate solution (see Fragment 7), or (b) after some turns in an extended nonagreement sequence (see Fragment 8).

Fragment 7 [Nana-Haru: G10-1]
1 Nana I think this is (.) correct?

2→ Haru wakara nai. shika tte kazoe rare (.) nai yo ne.
 know Neg deer Top count Pot Neg FP FP

3 [fukasen meishi ja nakattake.
 uncountable noun Cop Neg.Pst.Q
 ‘I don’t know for sure. Deer is not countable, right? Isn’t it an uncountable noun?’

Fragment 8 [Kyoko-Momo: G3-1]
1 Momo this sentence is correct.

2 Kyoko OH.

3 Momo [I think.

4 Kyoko [ná- naze?
 wh- why
Downtonning of the original candidate solution in a third position

When the recipient does not display support or agreement to the speaker’s candidate solution, one of the actions that the speaker may perform is to tone down the original solution with wakaranai in a third position. The recipient’s nonagreeing responses may be minimal vocalizations such as mm, acknowledging or understanding responses such as ah (see Fragment 9) or next turn repair initiators such as requests for confirmation or clarification (see Fragment 10).

Fragment 9 [Kyoko-Haru: G4-3]

1 Kyoko checking tte nani?
checking QT what
‘What is checking?’

2 Haru kogitte?
bank.check
‘Kogitte (bank check)’

3 Kyoko ah:::

(398)
Results of the Quantitative Analyses

In order to determine the frequencies and distribution of *wakaranai*, all the instances that appeared in the data set were tallied.

Table 1 compares the frequencies of the sequential functions of *wakaranai* observed in the three tasks.

<table>
<thead>
<tr>
<th>Task</th>
<th>EX</th>
<th>CRI</th>
<th>CO</th>
<th>DL</th>
<th>DT</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grammar</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td>15</td>
<td>5</td>
<td>29</td>
</tr>
<tr>
<td>Reading</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>Video Story</td>
<td>55</td>
<td>12</td>
<td>9</td>
<td>9</td>
<td>26</td>
<td>111</td>
</tr>
<tr>
<td>Total</td>
<td>64</td>
<td>12</td>
<td>11</td>
<td>26</td>
<td>33</td>
<td>146</td>
</tr>
</tbody>
</table>

Note. EX = an expression of NU or LK in lieu of a proposal of a candidate solution; CRI = a claim of NU or LK in response to a request for information in a second position; CO = a coinciding expression of NU or LK in response to an expression of NU or LK in a second position; DL = a delay to a proposed candidate solution in a second position; DT = downtoning of the original candidate solution in a third position.

Table 2 displays the distribution of the sequential functions of *wakaranai* observed in the three tasks. The results of the Pearson chi-square test between the sequential functions and task types which were conducted to find out that these frequencies are not due to chance factors (see Brown, 2001) and the
Cramér’s V coefficient to indicate the strength of the association between the sequential functions and task types are also shown in Table 2.

Table 2. Distribution of Sequential Functions of Wakaranai in Three Tasks

<table>
<thead>
<tr>
<th>Task</th>
<th>EX</th>
<th>CRI</th>
<th>CO</th>
<th>DL</th>
<th>DT</th>
<th>ALL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Grammar</td>
<td>7</td>
<td>4.8</td>
<td>0</td>
<td>.0</td>
<td>2</td>
<td>1.4</td>
</tr>
<tr>
<td>Reading</td>
<td>2</td>
<td>1.4</td>
<td>0</td>
<td>.0</td>
<td>0</td>
<td>.0</td>
</tr>
<tr>
<td>Video</td>
<td>55</td>
<td>37.7</td>
<td>12</td>
<td>8.2</td>
<td>9</td>
<td>6.2</td>
</tr>
<tr>
<td>Total</td>
<td>64</td>
<td>43.8</td>
<td>12</td>
<td>8.2</td>
<td>11</td>
<td>7.5</td>
</tr>
</tbody>
</table>

$\chi^2 = 6.31^*$

$V = .21^{***}$

Note. EX = an expression of NU or LK in lieu of a proposal of a candidate solution; CRI = a claim of NU or LK in response to a request for information in a second position; CO = a coinciding expression of NU or LK in response to an expression of NU or LK in a second position; DL = a delay to a proposed candidate solution in a second position; DT = downtoning of the original candidate solution in a third position. Due to rounding, some row and column percentages do not equal the total.*$p < .05$ ($df = 2$), **$p < .05$ ($df = 8$), ***$p < .05$.

As shown in Table 2, the most frequent function was an expression of NU or LK in lieu of a proposal of a candidate solution, i.e., an initiating position (EX). It occurred 64 times and accounted for 43.8% of all the instances. The second most frequent sequential function, downtoning of the original candidate solution in a third position (DT), appeared 33 times (22.6%), a delay to a proposed candidates solution in a second position (DL), 26 times (17.8%), a claim of NU or LK in response to a request for information in a second position (CRI), 12 times (8.2%), and a coinciding expression of NU or LK in response to an expression of NU or LK in a second position (CO), 11 times (7.5%).

The results of the chi-square test indicated that there was a significant difference in the frequencies of *wakaranai* for EX ($\chi^2 = 6.31$, $p < .05$), DL ($\chi^2 = 30.91$, $p < .05$), and all sequential functions ($\chi^2 = 33.96$, $p < .05$), but not for others. The Cramér’s V indicated a significant association for EX ($V = .21$, $p < .05$), DL ($V = .46$, $p < .05$), and all sequential functions ($V = .34$, $p < .05$) with the task type. Thus, it was found that the frequencies for EX, DL, and all sequential functions were not due to chance factors, but the frequencies for the other sequential functions were not far from the expected frequencies.

Discussion

This paper has provided the frequencies and distribution of the expression of nonunderstanding among the various sequential environments and tasks. From the results of the analyses it appears that (a) the participants use *wakaranai* particularly frequently in proposing candidate solutions and in response to candidate solutions; and (b) the use of *wakaranai* to perform particular sequential functions may vary with the task. The association of DL with the grammar tasks and EX with the video tasks may be a consequence of the nature of the tasks. In the grammar tasks, the learners choose an answer from two or more possibilities; therefore, there are more chances of nonagreement with a learner who has chosen a different answer. In the video tasks, because the learners were instructed to provide information based

(400)
on their notes or memories and to collaboratively reconstruct the story, they were more likely to ask each other questions about the content of the story as they reconstruct the story with collected pieces of information. The learners in the video tasks may also express NU more frequently because the audio-visual texts are not as easily retrievable as written texts in the grammar tasks.

This study has a number of theoretical and pedagogical implications for L2 use and learning. First, in problem-solving tasks L2 learners employ some of the same sequential resources that are found in ordinary conversations, such as performing agreement and disagreement, pursing a response, delaying expressing the stance. Through these actions, the learners attend to language form, negotiate meaning, and solve problems for L2 learning just as people use language to solve general problems in their daily lives. Thus, when teachers develop and implement L2 learning tasks, they need to offer learners opportunities not only to learn about language as social action but also to perform relevant social actions through the learning of L2.

Second, the majority of the instances of wakaranai in this study were not responses to requests for information but proposals of candidate solutions and responses to the other’s candidate solution or response. Unlike the IRF sequences that frequently occur in teacher-learner interactions, collaborative problem-solving conversations between learners supply numerous opportunities to use wakaranai for different functions in various sequential contexts, sometimes leading learners to extend their problem-solving sequences. This implies that learner-learner conversations are not duplicates of teacher-learner conversations but involve different structures and functions, and have the potential to accommodate individual needs for solving L2 learning problems. It, thus, suggests the potential importance of pair work in the classroom activities as an activity that can promote L2 learning.

Third, the distribution of the various uses of wakaranai in this study suggests that learners in learner-learner interactions can feel safe in expressing NU or LK and take risks in proposing candidate solutions and nonagreement to the other’s candidate solutions. In such environments, wakaranai can serve as a learning tool, allowing learners to interact with other learners to produce a solution to problems in the L2 that neither of them would have been able to solve alone. This implies that, even though wakaranai is an L1 expression of NU or LK, it is not merely an unimportant L1 utterance that shows no evidence of learners’ L2 learning or willingness to communicate but plays an important role in their L2 learning and communication. This supports Mori’s (2004) observation in a study of American learners of Japanese as a foreign language that it is worth considering permissible and/or effective use of the L1 in order to maximize the quality of L2 participation when making pedagogical decisions about the use of pair work in the L2 classroom.

To continue with this line of work, future researchers may need to explore the following points. First, because the participants in the present study were limited to 49 EFL learners in two Japanese universities, a larger number of L2 learners need to be examined in order to see whether other L2 learners perform similar actions with wakaranai in peer learning.

Also, although wakaranai is a typical utterance recurrently used to claim NU or LK among learners, the focus in the present study was limited to this expression. Studies on other verbal and nonverbal expressions may have a potential to support the findings of the present study and also reveal different aspects of linguistic and social interactions between learners.
References

Appendix

Transcription Conventions

- `:` lengthening of the preceding sound or syllable
- `:` a more prolonged stretch
- **CAPITAL** loud talk
- `underline` emphasis
- `"soft"` speech in soft voice
- . falling intonation (final)
- `?` rising intonation (final)
- `-` cut-off of the current sound
- `[overlap]` overlapping talk
- `=` latching
- `()` short untimed pause
- `(hhh)` audible aspirations or laughing within a word
- `italics` Japanese in romaji
- `(())` comment by the transcriber
- `‘idiomatic’` idiomatic translation
- `{ }` words or phrases in idiomatic translation which are not explicitly stated in Japanese utterances

Transcription Conventions for Japanese Grammatical Analysis

- `Cop` copulative verb (e.g., *da*),
- `FP` sentence-final particle (e.g., *na, ne, sa, yo*),
- `LK` nominal linking particle (*no*),
- `Neg` negative (*nai, n, nee*)

(403)
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pol</td>
<td>politeness marker (e.g., desu, masu)</td>
</tr>
<tr>
<td>Pot</td>
<td>potential marker (e.g., reru, rareru)</td>
</tr>
<tr>
<td>Pst</td>
<td>past tense marker (e.g., -ta)</td>
</tr>
<tr>
<td>PT</td>
<td>other particles</td>
</tr>
<tr>
<td>Q</td>
<td>question particle (e.g., ka, no, kana)</td>
</tr>
<tr>
<td>QT</td>
<td>quotative particle (to, -tte)</td>
</tr>
<tr>
<td>SP</td>
<td>subject particle (ga)</td>
</tr>
<tr>
<td>Tag</td>
<td>tag-like expression (e.g., deshoo, janai)</td>
</tr>
<tr>
<td>Top</td>
<td>topic particle (wa)</td>
</tr>
</tbody>
</table>