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1 ．Introduction

The possibil ity of cooperation in the 
Prisoner’s Dilemma has been well-studied, and 
now seems to be well -understood. The 
classical folk theorem describes rational 
cooperat ion in a repeated play under 
appropriate punishment mechanisms; and 
bounded rationality as modeled by automata 
or machines with computational constraints 
can also induce cooperation between players. 
The bounded rationality approach can be 
found, for example, in Rubinstein [11], Abreu 

Abstract. We consider the one-shot Prisoner’s Dilemma played by programs or machines, and show 
that the mutual cooperation is rather an ordinary event under the bounded rationality expressed by 
the computability. The kin recognition player (KRP, for short) is a program with the ability to 
recognize the opponent, and cooperate if and only if the opponent is kin to itself. We prove the 
existence of the KRP, and also of altruistic players which unilaterally self-sacrifice to the opponents 
that are kin to a reference KRP. It turns out that while any KRP is evolutionary stable, the self-
sacrificing altruistic player is not.

and Rubinstein [1], Neyman [8], Megiddo 
andWigderson [7], and others. Howard [6] also 
presented machine players, and argued even 
more drastically that cooperation is possible in 
the one-shot Prisoner’s Dilemma. Tennenholtz 
[12] has considered the machine program with 
essentially the same ability to that of Howard 
[6]. With imperfect information, Harrington [5] 
also showed that cooperation can be obtained 
in the one-shot play.

Among others, the argument of Howard [6] 
is remarkable in that it is based on the logical 
feasibility of recognizing the opponent players. 
The self-recognition player (the SRP, for short) 
has the ability to recognize the type of the 
opponent, and cooperates if and only if the 
opponent is identical to itself. Under the 
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assumption that players are drawn from a 
program pool and matched to play the Prisoner’s 
Dilemma, such an ability of the SRP leads to 
mutual cooperation between the same SRPs in 
the one-shot play. The secret handshake mutant 
due to Robson [10], too, has a similar ability to 
recognize opponents through signaling.

As is also mentioned in Howard [6], however, 
a drawback of the SRP would be that it cannot 
by definition cooperate with an opponent that 
is different from itself yet behaves identically. 
In other words, the SRP cannot cooperate with 
its kin, relatives, friends, or fellows, leaving 
considerable inefficiency in the achievement of 
mutual cooperation.

In this paper, we shall first extend this ability 
of cooperation to a wider class of players which 
might be interpreted as brothers and sisters, a 
family, relatives and kin, thereby obtaining the 
cooperation as rather an ordinary behavior in 
the one-shot Prisoner’s Dilemma. Howard [6] 
discusses several extensions of the SRP, but 
here we present an extended model via the 
computability approach. Two players will be 
called kin to each other if they are in a kin 
relation in the sense that they have an ancestor 
in common. This will turn out to be a recursive 
equivalence relation; that is, an equivalence 
relation that can be decidable by a fixed 
algorithm in finite steps. We will call the player 
with the ability to cooperate with its kin the 
kin-recognition player (KRP, for short).

One of the interesting consequences of 
considering in the computability setting is the 
logical existence of a highly altruistic player 
associated with a KRP. This player unilaterally 
sacrifices itself to any opponent that is kin to 
the KRP, being certainly exploited by the 
opponent. Such a player, though not a KRP, 
necessarily exists along with any KRP. 
Therefore, the altruism may be attributed to 

the bounded rationality as expressed by the 
computability.

We then discuss the stability of a KRP and 
other players in an evolutionary environment. 
It turns out that while any KRP is evolutionary 
stable, the altruistic player is not: the unilateral 
altruism is hard to prevail in a population. 
This is in accord with the fact that mutual 
cooperation is more frequently observed 
compared to unilaterally altruistic behavior in 
real life situations.

A crucial structure of the KRP is the self-
reference that a KRP is a player that recognizes 
the opponent as a KRP. Howard [6] presented 
the SRP by directly constructing an algorithm, 
both in English and in a programming language, 
dissolving the self-reference. We will prove the 
existence of a KRP by a recursion theorem in 
computability theory, which enables us to treat 
the self-referential property of a KRP.

Finally, we conclude with some remarks.
In Appendix, some of the elements of 

computability theory necessary for our results 
is summarized.

2 . The Self-Recognition Player

Let us consider the following Prisoner’s 
Dilemma with c denoting cooperation, and d, 
defection.

A Nash equilibrium is a pair of strategies, each 
of which is a best reply to the other. Thus, (d, d) 
is the only Nash equilibrium in this game.

The self-recognition player (SRP) introduced 
by Howard [6] is a strategy that may be 
in terpreted  to  have  acqu i red ,  in  the 
evolutionary process, the ability to recognize 
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the opponent and cooperate if and only if the 
opponent is identical to itself. The secret 
handshake mutant (Robson [10]) would be an 
example of such players acting to the same 
effect through mutually recognizable signaling.

Denoting SRP by s, the Prisoner’s Dilemma 
is augmented as follows.

There are now two Nash equilibria, (d, d) and 
(s, s). In the evolutionary interpretation, 
however, only the latter equilibrium can 
survive the evolutionary process. To see this, 
let us recall the definition of the evolutionary 
stable strategy (ESS, for short): a strategy x is 
said to be an ESS if (x, x) is a Nash equilibrium, 
and if y is also a best reply to x then x is a 
better reply to y than y is to itself. Thus, the 
strategy s is the only ESS, and mutual 
cooperation will prevail in the population.

3 . The Kin-Recognition Player

In order to discuss the extension of SRP and 
its general existence, let us treat SRP in a 
more rigorous framework.

In this paper, a program is a finite algorithm 
that computes a unary partial function f from 
N = {0, 1, 2, ... } to N, i.e., a function f : D( f ) ⊆ 
N → N, where D( f ) = { x ― f (x) is defined} is 
the domain of f (see Appendix (1)). Such a 
function f is called computable. Any such 
program can be coded into a natural number 
by a fixed coding system, so that N is also the 
set of the code numbers or indices of all such 
programs, and that there are only countable 
numbers of computable functions (Appendix 
(2)).

Let x be now the index of a program 
computing the function x. Program x is then 
a player of the Prisoner’s Dilemma if the 
range of the function x is {c, d} N, where 
the numbers c and d (c≠d) represent 
cooperation and defection, respectively.

We will assume that every program is fed as 
an input a natural number, the index of the 
opponent program. Or ,  as Binmore [3 ] 
metaphorically suggested, every program may 
have its index labeled on its ‘forehead’ and 
have the ability each other to read it. Other 
abilities such as lying or cheating (e.g., the 

‘sucker punch mutant’ due to Robson [10]) 
could also be treated in the computability 
setting, but here we confine ourselves to 

‘honest players’only.
Program x follows the procedure according 

to its own instructions: it may decode the 
input and simulate the behavior of the 
opponent to determine its output, or may 
simply ignore it and produce an output, or 
may produce nothing. Since the function x is 
partial, x may be undefined for some inputs. 
The ability of recognition in the Prisoner’s 
Dilemma, however, requires a player to 
compute a total function, i.e., a function with 
domain N as defined below.

Let us now consider, for each x ∈ N and y 
∈ N, a binary relation K(x, y). We will later 
define a binary relation that x and y are kin to 
each other. For this purpose, let us introduce a 
basic property of K(x, y). The relation K(x, y) is 
sa id to be recurs ive i f  there exists  a 
computable function f (x, y) satisfying

Thus, if K(x, y) is recursive, whether or not x 
and y are in this relation is decidable by a 
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finite algorithm (see Appendix (6) and (3)). 
Then, the following lemma is basic to our 
results.

Lemma 1. Let K(x, y) be a recursive relation. 
Then, there exists a program x such that for all 
y ∈ N,

Proof. Since the relation K(x, y) is recursive by 
assumption, the function h defined by

is computable. The second recursion theorem 
then guarantees the existence of a fixed point, 
i.e., an index x such that

(Appendix (8)). Hence, there exists an index x 
such that

            
▪

The recursive relation assures the existence 
of a player x that cooperates if and only if the 
opponent y is in the relation K(x, y). Further, 
the recursiveness of K(x, y) alone provides 
potentially a wide domain of cooperation in the 
one-shot Prisoner’s Dilemma. Since there are 
infinitely many recursive relations, the 
cooperating player x will not be an exception in 
the environment of machine players. However, 
the cooperation may not be mutual; and, the 
opponent y of x with K(x, y) may not be a 
player of the Prisoner’s Dilemma. To obtain 
mutual cooperation, therefore, the recursive 
relation should have an appropriate structure.

By the way, the self-recognition player x is 

one that is given by the following:

Definition 1. Program x is said to be a self-
recognition player (SRP) if for all y ∈ N,

The existence of SRPs is a direct consequence 
of the above lemma, since the equality relation is 
recursive.

Proposition 1. There exists a self-recognition 
player.

4 . The Kin Relation with A Common Ancestor

For each e ∈ N, let us consider the set Ie = 
{z ― z = e }. This is the set of indices of all 
programs that compute the same function e, 
that is, programs that output the same action. 
Then, it is clear that the relation y∈Ix is an 
equivalence relation. But, the set Ix is not 
recursive due to Rice’s Theorem (Appendix 
(9)). Intuitively, this can be seen by observing 
that y∈Ix iff y= x and that the latter relation 
is not decidable because the equality of functions 
cannot be assured in any finite number of steps.

The non-recursiveness of Ie makes it impossible 
for any member x∈Ie to decide whether the 
opponent y is also a member of Ie or not, i.e., 
whether to cooperate or not. Therefore, it is at 
least necessary to have a set of‘fellow’programs 
as a recursive set.

For each e∈N, therefore, consider the subset 
I＊

e of Ie ; namely,

The set I＊
e is intended to mean a set of all 

descendants of e by the following assumptions.
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An immediate example of I＊
e satisfying the 

assumptions 1,2 and 3 would be obtained if the 
members of I＊

e are programs generated by 
adding to e any finite number of redundant 
instructions in a recursive way. Consider, for 
example, the simple case in which there are 
two different redundant instructions. Then, 
the same function is computed by 2n different 
programs with n redundant instructions added 
to e allowing repetitions. Letting I＊

e be the set 
of all such programs for n = 1, 2, … , the set I＊

e 
can be made recursive by the Padding Lemma 
(e.g., Proposition II.1.6 in Odifreddi [9]).

Or, we may resort to a biological analogy that 
descendants as living organisms generally have 
acquired more complexity than the ancestor in 
the evolutionary process. The greater program-
sizes of descendants might, therefore, be viewed 
as reflecting such complexity of subroutines 
which are irrelevant to the main part playing the 
Prisoner’s Dilemma.

In this way, we may call the members of I＊
e 

the descendants of e, which is also justified by 
the following remark.

Remark 1. For any x, e ∈ N, x ∈ I＊
e iff I＊

x ⊆ I＊
e. 

That is, x is a descendant of e iff the descendants 
of x are also the descendants of e.

This is so because by Assumption 2 we have 
that ¬(I＊

e  I＊
x ), since I＊

e  I＊
x would lead to the 

contradiction that x<e; and then, Assumption 3 
implies that I＊

x ⊆ I＊
e . The converse is clear by x 

∈ I＊
x . Thus, due to the recursively nested 

structure, the set I＊
e can be represented as a 

tree.

The singleton set {e} is a degenerate example 
of I＊

e . Here, we allow a slight abuse of the use 
of the word: any program is a descendant and 
an ancestor of itself.

We can now define the kin relation K＊(x, y) 
as follows : For all x and y,

The kin relation K＊(x, y) can be read as stating 
that x and y are kin to each other if and only 
if they have an ancestor in common.

Remark 2. If we take I＊
e = {e} for each e ∈ N, 

then the relation K＊(x, y) reduces to the 
equality relation x = y.

The relation K＊(x, y) has the desired property 
as shown below.

Lemma 2. The kin relation K＊(x, y) is a recursive 
equivalence relation.
Proof. First, we show that it is an equivalence 
relation. It will be enough to check the 
transitivity. Assume that K＊(x, y) and K＊(y, z). 
Then, there are w and v such that

x∈I＊
w∧y∈I＊

w  and  y∈I＊
v∧ z ∈I＊

v

Hence, y∈I＊
w∩I＊

v≠/0, so that by Assumption 
3, I＊

w ⊆ I＊
v or I＊

v ⊆ I＊
w . Then, w and v have a 

common ancestor o; that is, there exists an o 
such that I＊

w⊆I＊
v⊆I＊

o, or I＊
v⊆I＊

w⊆I＊
o . Hence,

x∈I＊
o∧z∈I＊

o

which shows that K＊(x, z), i.e., the transitivity.
To show that K＊(x, y) is recursive, first note 

that K＊(x, y) has a bounded search for a 
number w, that is,

K＊(x, y) ⇔ ∃w ≤ z  s.t.  x∈I＊
w∧y∈I＊

w

where z=min{x, y}. This must be so, because 
by Assumption 2, 0 ≤ w ≤ x and 0 ≤ w ≤ y 
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whenever the common ancestor w of x and y 
exists. By Assumption 1, the two relations x∈
I＊

w and y∈I＊
w are recursive. Conjunction of 

two recursive relations is recursive, and a 
bounded search for a number satisfying a 
recursive relation again defines a recursive 
relation (Appendix (5) and (6)). Hence, K＊(x, y) 
is recursive.     ▪

We are now ready to define the kin recognition 
player.

Definition 2. Let K＊(x, y) be the kin relation. 
Then, program x is said to be a kin-recognition 
player (KRP) if for all y ∈ N,

The kin-recognition player is thus a program 
that cooperates if and only if the opponent is 
kin to itself.

Proposition 2. Under assumptions 1, 2 and 3:
(1) There exists a KRP.
(2)  If x is a KRP and K＊(x, y), then y is also a 

KRP.
Proof. Existence follows from lemmas 2 and 1. 
Result 2 follows by the fact that K＊(x, y) is an 
equivalence relation.    ▪

If x is a KRP, the members of {y ―K＊(x, y)}, 
the equivalence class of x, are all KRPs 
cooperating with each other. Since {y ―K＊(x, y)} 
is generally an infinite set, the domain of 
mutual cooperation is much broader than that 
of the SRP.

5 . Unilateral Altruism

The fact that any KRP x cooperates with y 
if and only if K＊(x, y), i.e., y is kin to x just 

implies that x regards the opponent z with 
¬K＊(x, z) as a stranger. This is so even if the 
stranger z computes the same function z= x . 
In the pool of programs that are strangers to 
KRP x, there are players of Prisoner’s Dilemma 
that behave in fact strangely. We show that 
there exists a program sacrificing itself 
unilaterally to all players kin to x.

Given x, let us define D(x) := {y ― y(x) = d}. 
This is the set of programs not cooperating 
with x.

Definition 3. Program z is said to be a self-
sacrificing player if there is a recursive set D＊

 D(z) such that z(y) = c∀y ∈ D＊

The self-sacrificing player is a player who 
cooperates in spite of being certainly exploited.

Proposition 3. Let x be a KRP. Then, there 
exists a self-sacrificing player z such that ¬K＊(z, 
x) and

with D＊ = {y ―K＊(y, x)}.
Proof. Take a KRP x, and consider the set {y ―
K＊(y, x)}. Then, by construction, we have {y ―

K＊(y, x)}  Ix. The inclusion is proper, since {y

―K＊(y, x)} is a recursive set, whereas Ix is not. 
Then, there exists z such that

Hence, z= x and ¬K＊(z, x). Moreover, y (z)=d 
for all y with K＊(y, x), since ¬K＊(z, x) is equivalent 
to ¬K＊(z, y) whenever K＊(y, x). Hence, z is 
self-sacrificing with D＊= {y ―K＊(y, x)}.  ▪

The self-sacrificing player z might be called a 
kin-to-x-altruistic player, and an x-altruistic 
player in the special case where the KRP is just 
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an SRP. The player z self-sacrifices just for any 
opponent y that is kin to x, but defects otherwise 
even when the opponent is identical to itself. 
The altruism is never reciprocal, since by 
definition the opponent players that are kin-to-x 
will not cooperate with the player z.

It is somewhat surprising that the very 
existence of a KRP should entail the existence 
of such a self-sacrificing, altruistic player. If the 
rationality of players were perfect so that {y ― y 
is kin to x} = Ix , then such an altruistic player 
could not exist at all. In this sense, the altruistic 
behavior can be ascribed to the bounded 
rationality as embodied by the computability.

6 . Evolutionary Stability

A legitimate question to be posed then 
would be whether or not such cooperation and 
the unilateral altruism can prevail in a 
population. Since any SRP is an ESS, any KRP 
can be expected to prevail as well, which is in 
fact the case as shown below.

Let J  N be a nonempty subset of players 
of the Prisoner’s Dilemma. We say J is 
homogeneous if there is a numberνsuch that 
for all x, y ∈ J, the pair (x, y) generates the 
unique identical payoffνto each. Now, let the 
Prisoner’s Dilemma be played by any x, y ∈ N 
drawn from the population.

Definition 4. Let J  N. Then, any member of 
J is said to be a collectively evolutionarily 
stable strategy (CESS) if

(1) J is homogeneous.
(2) For any x, y∈J, (x, y) is a Nash equilibrium.
(3)  For any x ∈ J, if there exists z  /∈ J such 

that z is also a best reply to x, then x is a 
better reply to z than z is to itself.

The set J satisfying conditions (1), (2) and (3) 

is a special case of the evolutionarily stable set 
defined by Thomas [13], and is a straightforward 
extension of the ESS to a set of strategies 
yielding a unique identical payoff against any 
member of the set. The set of kin to x＊ for 
any given KRP x＊ is a set of CESSs as can be 
seen from the following result.

Proposition 4. Let K＊(x, y) be the kin relation, 
and let x ∈ Jx＊ = {y ―K＊(x＊, y)} for some KRP 
x＊. Then x is a CESS.
Proof. It will be sufficient to check condition 3 
in the definition of CESS. Let z /∈ Jx＊. Since 
every member of Jx＊ defects against z, the 
payoff to z is at most 1. Hence, z cannot be a 
best reply to any x ∈ Jx＊ , and condition 3 is 
vacuously satisfied.    ▪

As for the stability of the unilaterally altruistic 
player, the situation is opposite: it will not 
become dominant, for the altruistic behavior 
would become more and more hard to take 
because the matching would tend more and 
more to be the one defecting each other. In fact, 
any such kin-to-x-altruistic player z cannot 
survive the evolutionary process as indicated in 
the payoff matrix below.

The KRP x is the only ESS in this game, and 
the kin-to-x-altruistic player z is not an ESS as 
long as a KRP is in the population.

Thus, while cooperation among a family, 
relatives and kin can evolve in the population, 
the altruism would become extinct, which 
would explain why such a self-sacrificing, 
unilateral altruism is not so widely observed 
in real life situations.
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7 . Concluding Remarks

Assuming players of Prisoner’s Dilemma as 
programs (finite algorithms), we have shown 
that the self-recognition player (SRP) can be 
extended to the kin-recognition player (KRP) 
cooperating with much larger class of opponent 
players. The kin relation is defined as having 
an ancestor in common, which led to a 
recursive equivalence relation guaranteeing the 
existence of KRPs.

It was shown that a KRP entails the existence 
of an altruistic player cooperating with any 
opponent in spite of being certainly exploited. 
The existence of such a player turned out 
intrincically dependent upon the bounded 
rationality in terms of computability as applied 
in this paper. In the evolutionary interpretation, 
such an altruism is to be extinct, whereas KRP 
was shown to be evolutionary stable, which 
would not contradict the theory of kin selection 
in evolutionary biology.

Due to the property that the kin relation is 
an equivalence relation, any KRP does not 
cooperate across different equivalence classes 
of KRPs. Since we are concerned with 
cooperation based on the kin relation, this 
would be a natural consequence rather than a 
limitation of KRP: real players not in the same 
kin relation may not necessarily cooperate 
with each other.

But, can we have any general relation that 
admits a broader domain of cooperation across 
different equivalence classes of KRPs? Consider 
the set

I (K＊) contains, for example, such x, y, z and w 
that satisfy K＊(x, y), K＊(z, w) and ¬K＊(x, z). If 
this set is recursive, we may obtain the 
program x such that

That is, any member x of I (K＊) cooperates 
with any member of I (K＊), i.e., with any 
player in any equivalence class of KRPs. But, 
here again, Rice’s Theorem stands in the way: 
I (K＊) is a set of indices of programs computing 
unary functions which constitute a nonempty 
proper subset of all unary computable functions. 
Hence, the relation x ∈ I (K＊) is undecidable.

Rice’s Theorem is indeed a source of many 
negative results in computability theory, though 
we do not regard the above property of KRP 
as a negative result. In this way, we may 
conclude that KRP is one of logically maximal, 
as well as behaviorally reasonable extensions of 
SRP in achieving cooperation in the one-shot 
Prisoner’s Dilemma.

Appendix

Here, some of the elements of computability 
theory is summarized. For formal treatments, 
the reader may refer to Cutland [4] , or 
Odifreddi [9].

(1). Intuitively, a partial function f from N = {0, 
1, 2, …} to N is said to be computable if there 
exists a finite algorithm such as a Turing 
machine or a unlimited register machine to 
compute f . The definition is similar for n-ary 
functions. There are several formalizations of 
the intuitive concept of effective computability, 
all of which have turned out to be equivalent 
to the Turing-machine computability, giving 
rise to the well-defined class of all partial 
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recursive functions. Thus, the partial recursive 
functions are considered as the formalization 
of the functions which are effectively computable 
in the intuitive sense (Church’s thesis).

(2). Any algorithm or program computing a 
unary function is a finite sequence of well-
defined instructions. Let be a set of all such 
programs. Then a bijection γ: →G⊂N can 
be defined and is called a coding or Gödel 
numbering if γ and γ−1 are both computable 
in the following sense:

a:  Given a particular program P∈ , we can 
effectively find the code number γ(P)∈G;

b:  Given a number n∈G, we can effectively 
find the program P = γ−1(n).

There are several established ways to code finite 
objects. Fixing on one coding, every computable 
(unary) function appears in the enumeration:

0, 1, 2, 3, …
where, for each e, the number e is the index 
(code number) of a program computing the 
function e. Thus, a natural number can be 
identified with the program with that number 
as its index.

(3). An n-ary relation or predicate K(x1,… , xn) is 
said to be decidable, recursive or computable if 
its characteristic function cR (x1, … , xn) is 
computable, i.e., if the total function

is computable.

(4). We say that an n-ary relation Q (x1,… , xn) is 
partially decidable if its partial characteristic 
function f (x1,… , xn) is computable, i.e., if the 
partial function

is computable.

(5). It can be shown that an n-ary relation Q (x1,
… , xn) is partially decidable iff there is a 
decidable n+1-ary relation R (x1,… , xn, y) such 
that

The relation in the right-hand side involves the 
unbounded search for a number y satisfying the 
decidable relation R (x1, … ., xn, y). Checking 
successively for y = 0, 1, 2,… whether or not y 
satisfies the relation R, the search procedure 
stops if it finds such a y; otherwise the search 
goes on for ever.

If the above search procedure is bounded, i.e.,

then the relation Q (x1, … , xn) is said to be 
decidable, for only a finite number of checking 
is needed to decide whether or not R (x1,… , xn, 
y).

(6) . A subset A of N is said to be recursive if 
the membership relation x∈A is decidable. 
The set of primes, the set of odd numbers, the 
set N, the empty set and finite sets are 
immediate examples of recursive sets. A finite 
union of recursive sets are also recursive.

(7). A subset A of N is called recursively 
enumerable (r.e. for short) if the membership 
relation x∈A is partially decidable. Recursive 
sets are recursively enumerable, since the 
partial characteristic function for the relation 
x∈A, where A is recursive, can be always 
obtained by having the computation of the 
characteristic function for the relation x∈A 



― PB ―― 10 ― 流通経済大学論集　Vol.49, No.2

(118)

enter a loop whenever x /∈A.
An important r.e. set that is not recursive is 

{x ― x (x) is defined}. The set I (K＊) appeared 
in Concluding Remarks is not recursively 
enumerable due to the theorem of Rice and 
Shapiro (see, Cutland [4, Theorem 7-2.16, 
p.130]); and the complement I (K＊)c in N is also 
not recursively enumerable (Cutland [4, 
Theorem 7-3.4, p.135]). Hence, the decision 
problem whether or not y is a KRP is not just 
undecidable in the same sense as the problem 
whether or not x (x) is defined, but far more 
difficult than this problem.

(8) The Second Recursion Theorem.
 Let f be a 2-ary computable function. Then, 
there exists an integer e such that e(x)≃f (e, x).

Here, the symbol ≃means that respective 
values of both sides are either undefined or 
defined with the same value. The number e is 
called a fixed point. When f is a total function, 
there are infinitely many fixed points (see e.g., 
Odifreddi [9]). A fixed point e is the index of a 
program that computes the function defined 
by using e itself; therefore, it is widely useful 
in showing the existence of programs defined 
in a self-referential way.

This theorem is true for x = (x1, … , xn) and 
(n+1)-ary computable function f .

(9) Rice’s Theorem.
 Suppose that B is a nonempty proper subset 
of all unary computable functions. Then the 
problem e∈B is undecidable.

That is, wheher or not a given function e has a 
certain non-trivial property is generally 

undecidable. This theorem is a source of many 
impossibility results in computability theory. For 
example, the set Ie = {z ― z = e} is not 
recursive, since the set { z ― z ∈Ie} is a 
nonempty proper subset of all unary computable 
functions.
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